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Nonexistence of H Theorem for Some Lattice
Boltzmann Models
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In this paper, we provide a set of sufficient conditions under which a lattice
Boltzmann model does not admit an H theorem. By verifying the conditions,
we prove that a number of existing lattice Boltzmann models does not admit
an H theorem. These models include D2Q6, D2Q9 and D3Q15 athermal mod-
els, and D2Q16 and D3Q40 thermal (energy-conserving) models. The proof
does not require the equilibria to be polynomials.
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1. INTRODUCTION

The lattice Boltzmann equation (LBE)(1,2) has emerged as an effective
method for computational fluid dynamics (CFD) (cf. a recent review(3) and
refs. therein). The most notable feature of the lattice Boltzmann equation
is its direct connection to a discretization of the Boltzmann equation,(4,5)

rather than to discretizations of the Navier–Stokes equations. The kinetic
origin of the LBE method immediately leads to the question whether or
not the H theorem associated with the Boltzmann equation is preserved
in the lattice Boltzmann equation, after the drastic approximations made
to derive it.(4,5) The H theorem has many important ramifications and
is directly related to the stability of the LBE method. Therefore it has
been a subject of considerable research interest (cf. refs. 6–10 and refer-
ences therein). It seems to be intuitive that the LBE models with relax-
ation collision operators and polynomial equilibria do not admit an
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H theorem,(7,8) because it is easy to demonstrate that some LBE models
become linearly unstable under certain conditions.(11) However, only very
recently was a rigorous proof given.(12)

There has also been an effort to construct LBE models which admit
an H theorem.(6,9,10) This has been done in two ways. One is to analyti-
cally construct the equilibria which admit an H theorem.(6,9) The other is
to construct an collision process which maximizes a given Lyapunov func-
tional numerically.(10) These “entropic” LBE models are aimed to ensure
an absolute numerical stability in LBE algorithms. However, these “entro-
pic” LBE models have severe drawbacks.(13,12)

The present paper is a continuation of our previous work,(12) in
which we rigorously proved that a class of the LBE models with polyno-
mial equilibria does not admit an H theorem. In this paper we generalize
our previous result to provide a set of sufficient conditions under which
an LBE model does not admit an H theorem. The proof does not require
the equilibria to be polynomials. The theorem can also be used to verify
some existing results. In particular, we narrow the validity domain of the
H theorem given in ref. 6 for a class of LBE models with nonpolynomial
equilibria.

The remainder of the paper is organized as follows. Section 2 con-
tains our main results including a lemma and a theorem. The lemma states
that the H function must be of a certain canonical form and the theorem
proves that an LBE model does not admit an H theorem if it satisfies a set
of sufficient conditions. Section 3 provides several examples of LBE mod-
els with no H theorems. These examples include D2Q9, D3Q15 and D2Q6
athermal LBE models, and D2Q16 and D3Q40 thermal (energy-conserv-
ing) models. Section 4 addresses the validity domain of the H theorem for
an LBE model with nonpolynomial equilibria. We find the validity domain
is smaller than the positivity domain of the equilibria. Finally, Section 5
concludes the paper.

2. MAIN RESULTS

On a D-dimensional lattice δxZD with discrete time tn ∈ δtN0, the
lattice Boltzmann equation reads as

f(xk + cδt , tn+ δt )= f(xk, tn)+J(f(xk, tn)). (1)

In Eq. (1), the bold-face symbols denote column vectors in R
Q:
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f(xk + cδt , tn+ δt ) := (f0(xk, tn+ δt ), . . . , fN(xk + cNδt , tn+ δt ))�

f(xk, tn) := (f0(xk, tn), . . . , fN(xk, tn))
�

J(f(xk, tn)) := (J0, . . . , JN)
�,

{fi} and {Ji} are the single particle distribution functions and collision
terms, respectively, and the discrete velocity set {ci} has Q distinctive ele-
ments, and it may or may not include the zero velocity c0 = 0. If c0 is
included, then the discrete velocity set is {ci |i= 0, 1, . . . ,N} and the total
number of velocities is Q= N + 1; otherwise, the velocity set is {ci |i =
1, . . . ,N} and Q=N .

We assume that the discrete velocity set has the symmetry property
that, for every cj ∈{ci}, there is a unique cj̄ ∈{ci} such that

cj̄ =−cj . (2)

In addition, the lattice δxZD has the following property

ciδt +xj ∈ δxZD ∀xj ∈ δxZD. (3)

The evolution of the lattice Boltzmann equation (1) can be decomposed as
two steps, collision and advection:

collision: f̃(xk, tn)= f(xk, tn)+J(f(xk, tn)), (4a)

advection: f(xk + cδt , tn+ δt )= f̃(xk, tn). (4b)

In what follows we shall restrict ourselves to a finite and periodic lat-
tice space. An H theorem for Eq. (1) implies that there exists a strictly
convex function H =H(f) with the following two properties:

(a) The advection has no effect on the total entropy;

(b) J(f (eq))=0 iff f (eq) minimizes H with given constraints.

The property (a) of H allows us to prove the following lemma.

Lemma 2.1. Assume the first-order derivatives Hfi :=∂H/∂fi of the
entropy function H =H(f) exist. Then the above property (a) implies that
H(f) must be of the canonical form

H(f)=∑
i

hi(fi). (5)
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The proof of this lemma is similar to that in ref. 12 where H is
required to be smooth, whereas here H is assumed to have only first-order
derivatives Hfi . Because this alters the proof little, we refer interested
readers to our previous paper (see ref. 12) for details.

We note that the (strict) convexity of H(f), equivalent to that of the
hi ’s, is not used in the proof of Lemma 2.1. We also note that although
Eq. (5) has been motivated by plausible arguments, for the most part, gen-
erally it has simply been taken as a key assumption (e.g., refs. 7, 10).

As is well known, the property (b) of H(f) implies that the equilibria
f (eq) must satisfy

h′
i (f

(eq)
i )=a+b·ci + c |ci |2 ∀ i. (6)

Here a= a(ρ,u, e), b = b(ρ,u, e) and c= c(ρ,u, e) are the Lagrange mul-
tipliers corresponding to the conservation constraints

ρ=∑
i

fi, ρu=∑
i

cifi, ρe=∑
i

1
2
|ci −u|2fi, (7)

where ρ, u and e are the density, flow velocity and specific energy,
respectively. Obviously, for athermal models, the energy conservation con-
straint is removed, and hence we have only two Lagrange multipliers a=
a(ρ,u) and b=b(ρ,u).

For most LBE models, the equilibria f (eq) are not constructed based
on Eq. (6). Instead, they are constructed to satisfy the conservation con-
straints alone. The equilibria so obtained are usually polynomials in the
conserved variables and they may not admit an H theorem. To clarify this,
we prove the following theorem.

Theorem 2.2. Consider an LBE model with equilibria f (eq)= f (eq)(S).
If there exist two states S1 and S2, and two discrete velocities ci and cj
such that

f
(eq)
i (S1) �=f (eq)

i (S2), f
(eq)
l (S1)=f (eq)

l (S2) (8)

for l ∈ {ı̄, j, j̄} (and |ci | = |cj | for thermal models), then the LBE model
does not admit an H theorem.

Proof. The proof is accomplished by contradiction. Assume there
exists an H theorem. By Lemma 2.1, the entropy function H(f) must be
of the form (5) where the hi ’s are strictly convex.
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For brevity, we consider only the athermal case, where

h′
i (f

(eq)
i )=a+b·ci . (9)

Because f (eq)
l (S1)=f (eq)

l (S2) for l ∈{ı̄, j, j̄}, Eq. (9) leads to

a(S1)+b(S1) · cı̄ = a(S2)+b(S2) · cı̄ ,
a(S1)+b(S1) · cj = a(S2)+b(S2) · cj ,
a(S1)+b(S1) · cj̄ = a(S2)+b(S2) · cj̄ .

Since cj̄ = −cj , we add the last two equalities above to obtain a(S1)=
a(S2). Thus, the first equality gives b(S1) ·cı̄ =b(S2) ·cı̄ and thereby b(S1) ·
ci =b(S2) · ci . Consequently, we have

a(S1)+b(S1) · ci =a(S2)+b(S2) · ci ,

therefore h′
i (f

(eq)
i (S1))= h′

i (f
(eq)
i (S2)) because of Eq. (9). Then the strict

monotonicity of h′
i due to the strict convexity of hi immediately leads

to f
(eq)
i (S1)= f

(eq)
i (S2). This contradicts the assumption that f (eq)

i (S1) �=
f
(eq)
i (S2). Hence the proof is complete.

Theorem 2.2 provides a set of sufficient conditions under which a
given LBE model does not admit an H theorem. We note that the proof
of Theorem 2.2 does not require any specific knowledge of f (eq).

3. LBE MODELS WITHOUT H THEOREM

In this section, we apply Theorem 2.2 to a number of athermal and
thermal (energy-conserving) LBE models to show that these models do not
admit an H theorem. For this purpose, we will always choose S1 to be
a quiescent state of a nonzero constant density ρ = ρ0 �= 0 (and a con-
stant energy e0 for thermal models) and u=0. To find S2 = (ρ,u) or S2 =
(ρ, e,u) for athermal and thermal models, respectively, we choose two dis-
crete velocities ci and cj and solve the following algebraic equations:

f
(eq)
l (S2)=f (eq)

l (S1) for l ∈{ı̄, j, j̄}. (10)

The solutions of above equations are then used to check if f (eq)
i (S1) �=

f
(eq)
i (S2), and then if the conditions of Theorem 2.2 are satisfied.
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3.1. Athermal Models

For models considered here, the equilibria can be written as(4,5):

f
(eq)
i =wi ρ

{

γi + (ci ·u)
c2

+ 1
2

(
(ci ·u)2
c4

− u·u
c2

)}

, (11)

where wi, γi and c are parameters to be specified.

3.1.1. The D2Q9 Model

For this model, the discrete velocities are

ci =
⎧
⎨

⎩

(0,0), i=0,
(±1,0), (0,±1), i ∈{1, 2, 3, 4},
(±1,±1), i ∈{5, 6, 7, 8};

(12)

w0 = 4/9, w1,2,3,4 = 1/9 and w5,6,7,8 = 1/36; γ0 =α> 0, γ1,2,3,4 =β > 0 and
γ5,6,7,8 =γ =9−4(α+β)>0; and c=1/

√
3.

We choose S1 = (ρ, u1, u2)= (ρ0,0,0) with ρ0 �= 0 and two velocities
ci = c1 := (1, 0) and cj = c0 := (0, 0). To find another state S2 = (ρ,u)≡
(ρ, u1, u2), we solve the following equations

f
(eq)
l (S2)=f (eq)

l (S1) for l ∈{0, 1̄}={0,3}. (13)

Substituting S1 and S2 into Eq. (13), we have

ρ

(

α− 3
2
|u|2

)

= αρ0,

ρ

(

β+3u·c1̄ + 9
2
(u·c1̄)

2 − 3
2
|u|2

)

= βρ0.

These equations have solutions

ρ = 2αρ0

2α−3u2
, u2 :=|u|2 =u2

1 +u2
2,

u1 =
α−

√
α2 + (2α+β)(α−β)u2

2

2α+β ≡u1(u
2
2).

Clearly, u1 = u1(u
2
2) is well defined for u2

2 � 1 and u1(0)= 0. Thus, ρ =
ρ(u2

2) is also well defined for u2
2 � 1. Moreover, it is not difficult to see

that u1(u
2
2) �=0 if u2

2 �=0 provided that α �=β. For u1 =u1(u
2
2) �=0, it is easy
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to see that f (eq)
1 (S2) �=f (eq)

1 (S1) for S2 = (ρ(u2
2), u1(u

2
2), u2) with any u2 sat-

isfying 0<u2
2 � 1. Then the conditions of Theorem 2.2 are satisfied and

therefore no H theorem exists for the D2Q9 model provided that α �=β.
Similarly, by taking ci = c5 = (1, 1) and cj = c0 = (0, 0), we can show

that no H theorem exists when 5α+4β �=9.
If α= β and 5α+ 4β = 9, then α= β = 1 and the equilibrium (11) is

the second-order Taylor expansion of the Maxwellian.(4,5) In this case, we
choose ci =c5 = (1, 1), cj =c0 = (0, 0), S1 = (1,0,0) and S2 = (3/2,1/3,1/3)
and compute

f
(eq)
0 (S1)=f (eq)

0 (S2)= 4
9
,

1
36

=f (eq)
5 (S1) �=f (eq)

5 (S2)= 7
36
,

f
(eq)
5̄

(S1)=f (eq)
5̄

(S2)= 1
36
, c5̄ = c7.

Hence we show that the D2Q9 model does not admit an H theorem when
γi >0 in the equilibria (11).

Note that in the last part of the proof, we use a relative large velocity
u of u=√

2/3, although f(eq) remain positive with this value of u.
Although it is customary to set γi >0 in the equilibria Eq. (11), it is

not necessary. One can set, for example, α=−3/2, β=3 and γ =3.(14) In
this case, we take ci = c5 = (1, 1), cj = c6 = (−1, 1), S1 = (1,0,0) and S2 =
(10/9,1/3,1/3) to compute

7
36

=f (eq)
5 (S2) �=f (eq)

5 (S1)=f (eq)
l (S2)= 1

12

for l∈{5̄,6, 6̄}={7,6,8}. Thus we complete the proof that the D2Q9 model
does not admit an H theorem for plausible values of the parameters {γi}
in its equilibria.

3.1.2. The D3Q15 Model

For this 3-dimensional model, the 15 discrete velocities are

ci =
⎧
⎨

⎩

(0,0), i=0,
(±1,0,0), (0,±1,0), (0,0,±1), i ∈{1, . . . , 6},
(±1,±1,±1), i ∈{7, . . . , 15},

(14)

w0 = 2/9 and γ0 =α, wi = 1/9 and γi =β for i ∈{1, . . . , 6}, and wi = 1/72
and γi = (9 − 2α− 6β) for i ∈ {7, . . . 15}. And α> 0, β > 0 and (α+ 3β)<
9/2. For this model c=1/

√
3.
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We choose two velocities: ci = c1 = (1,0,0) and cj = c0 = (0,0,0), and
two states S1 = (ρ0,0,0,0) with ρ0 �=0 and S2 = (ρ,u)≡ (ρ, u1, u2, u3) as an
solution of

f
(eq)
l (S2)=f (eq)

l (S1) for l ∈{0, 1̄}={0,4},
which are

ρ

(

α− 3
2
|u|2

)

= αρ0,

ρ

(

β+3u·c1̄ + 9
2
(u·c1̄)

2 − 3
2
|u|2

)

= βρ0.

The general solutions of these equations are

ρ = 2αρ0

2α−3u2
, u2 :=|u|2 =u2

1 +u2
2 +u3

3,

u1 =
α−

√
α2 + (2α+β)(α−β)u2

⊥
2α+β , u2

⊥ :=u2
2 +u3

3.

Thus the conditions of Theorem 2.2 are met when α �=β. Furthermore, by
taking ci =c7 = (1,1,1) and cj =c0 = (0,0,0), we can show that no H the-
orem exists when α+2β �=3.

When α = β and α + 2β = 3, then α = β = 1 and the equilibrium is
the second-order Taylor expansion of the Maxwellian.(4,5) In this case we
take ci = c7 = (1,1,1), cj = c0 = (0,0,0), S1 = (ρ0,0,0,0) with ρ0 �= 0 and
S2 = (ρ,u)= (9/7,2/9,2/9,2/9) to show that

f
(eq)
0 (S1)=f (eq)

0 (S2)= 2
9
,

1
72

=f (eq)
7 (S1) �=f (eq)

7 (S2)= 1
72

+ 1
14
,

f
(eq)
7̄

(S1)=f (eq)
7̄

(S2)= 1
72
,

where c7 = (1,1,1) and c7̄ = c13 = (−1,−1,−1). Thus, the D3Q15 model
does not admit an H theorem.

3.1.3. The D2Q6 Model

Here the discrete velocities are

ci = (cos(π(i−1)/3), sin(π(i−1)/3)), i=1, 2, . . . , 6 (15)

and the equilibria are given by Eq. (11) with wi=1/6, γi=1 and c=1/
√

2.
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For this model, we choose ci = c5 = (−1/2, −√
3/2), cj = c1 = (1, 0),

S1 = (1,0,0) and S2 = (3,0,−1/
√

3). Then we compute

7
6

=f (eq)
5 (S2) �=f (eq)

5 (S1)=f (eq)
l (Sk)= 1

6
for l ∈{5̄,1, 1̄}={2,1,4}.

Hence, by using the velocity u = (0,−1/
√

3), we show that the D2Q6
model does not admit an H theorem.

3.2. Thermal (Energy-Conserving) Models

We now consider the thermal LBE models introduced in ref. 15.
These models have no zero velocity and the equilibria can be written as

f
(eq)
i =ρ

{
φi +ψi(ci ·u)+χi(ci ·u)2

}
. (16)

Here u2 :=u ·u and

φi = φi(e, u
2)=Ai(e)+Gi(e)u2 +Ei(e)u4, (17a)

ψi = ψi(e, u
2, (ci ·u)2)=Mi(e)+Qi(e)u

2 +Hi(e)(ci ·u)2, (17b)

χi = χi(e, u
2)=Ki(e)+Ri(e)u2, (17c)

where Ai , Gi , Ei , Mi , Qi , Hi , Ki and Ri are quadratic polynomials of e,
and they only depend on |ci |.(15)

3.2.1. D2Q16 Thermal Model

The D2Q16 model on a square lattice has 4 speeds: 1,
√

2, 2 and
2
√

2. For the purpose here, we use the speed 1 velocities to demonstrate
nonexistence of H theorem. When e=1, we have Ai =1/5, Gi =1/6, Ei =
1/8, Mi=−1/3, Qi=−1/2, Hi=1/3, Ki=−1/3 and Ri=−1/6 for |ci |=1,
i ∈{1,2,3,4}.

By taking ci = c1 = (1,0), cj = c2 = (0,1), S1 = (ρ, e, u1, u2)= (1,1,0,0)
and S2 = (24/59,1,1,0), we find

1
5

− 24
59

=f (eq)
1 (S2) �=f (eq)

1 (S1)=f (eq)
l (Sk)= 1

5
, ∀ k∈{1,2}

and l ∈ {1̄,2, 2̄} = {3,2,4}. Hence the conditions of Theorem 2.2 are met
and therefore H theorem does not exist for this model.

3.2.2. D3Q40 Thermal Model

The D3Q40 model on a cubic lattice has 5 speeds: 1,
√

2,
√

3, 2
and 2

√
3. When e = 8/3, we have Ai = −3403/2430, Gi = −23/48, Ei =
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−513/8960, Mi =Qi = 0, Hi = 1/192, Ki = 0 and Ri = −3/448 for |ci | =√
3, i ∈ {19, . . . ,26}. We choose two velocities: ci = c21 = (−1,−1,1) and

cj =c19 = (1,1,1), and two macroscopic states S1 = (1,8/3,0,0,0) and S2 =
(ρ,8/3, u1, u2, u3) which is the solution of

f
(eq)
l (S2)=f (eq)

l (S1), l ∈{ı̄, j, j̄}={23,19,25}.
The above equality leads to the following set of equations:

u1 +u2 +u3 = 0, (18a)

ρ

(
3403
2430

+ 23
48
u2 + 513

8960
u4
)

= 3403
2430

, (18b)

7(u1 +u2 −u3)
3 −9(u1 +u2 −u3)

2u2 = 0. (18c)

The solutions of Eqs. (18a) and (18c) are

u2 =u2(u1) =
(7−9u1)−

√
(9u1 +7)2 −324u2

1

18
,

u3 =u3(u1) =
−(7+9u1)+

√
(9u1 +7)2 −324u2

1

18
.

The above two functions of u1 are well defined in the vicinity of u1 = 0
and vanish at u1 =0. Moreover, they are smooth and u3(u1) does not van-
ish for u1 �=0. Thus Eq. (18b) determines ρ as a function ρ(u1) of u1.

Now we take S2 = (ρ(u1),8/3, u1, u2(u1), u3(u1)), which is completely
determined by u1, with a small but non-zero u1 to compute

f
(eq)
i (S2)−f (eq)

i (S1) = 2ρψi(8/3, u2)

= ρ(u1)
(u3(u1)−u2(u1)−u1)

3

96

= ρ(u1)u
3
3(u1)

12
�=0.

Hence, by Theorem 2.2, there exists no H theorems for this particular
model. We note that the above proof does not employ a large velocity, as
in some of the previous cases.

4. DISCUSSION OF ATHERMAL MODELS WITH NONPOLYNOMIAL

EQUILIBRIA

Now we consider a class of athermal LBE models constructed in
ref. 6 by explicitly solving Eq. (6) with hi(x)= (2/3)x3/2. Then we have
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f
(eq)
i = (a+b · ci )2, (19)

where a and b are the Lagrange multipliers determined by the con-
servation constraints in Eq. (7). The symmetric discrete velocity set
{ci} is so chosen that

∑
i ciαcjβ = Qc2

s δαβ , where subscripts α and β

denote the Cartesian coordinates in the D-dimensional space, hence c2
s :=∑

i |ci |2/(DQ).
The Lagrange multipliers can be explicitly obtained as

a=
√
ρR/Q, b= ρu

2aQc2
s

. (20)

Thus, the equilibria are

f
(eq)
i (ρ,u)= ρ

Q

{

R+ ci ·u
c2
s

+ (ci ·u)2
4c4
s R

}

, (21)

where R = 1
2

(
1+

√
1−M2

)
and M := u/cs . Note that R, thereby the

model, is well defined for M�1.
In ref. 6, the LBGK model with the above equilibria is shown to

admit an H theorem provided the model is under-relaxed. However, the
domain of validity for the H theorem, among other things, has not been
addressed. It is simply assumed in ref. 6 and subsequent papers along the
same line (cf. (9) and references therein) that the positivity of the equilib-
ria, i.e., M � 1, is sufficient to ensure an H theorem. Here we would like
to point out that, in fact, the valid domain of the H theorem is smaller
than the positive domain of the equilibria.

Since
√

f
(eq)
i =a+b · ci , we have

a+b · ci �0 ∀ i ,
which is equivalent to

|ci ·u|�2Rc2
s ∀ i,

by using the expressions of a and b given in Eq. (20). Moreover, the last
inequality is equivalent to

M� min
i: |ci |�cs

2cs |ci |
c2
s +|ci |2

=Mmin. (22)

Because there always exists at least one ci such that |ci |> cs , the above
bound on M is strictly lower than the positivity requirement M�1. Thus,
the validity domain of the H theorem may be smaller than the positivity
domain of f (eq), as indicated in ref. 6.
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In fact, we can show that the H theorem does not hold if the model
has a pair of discrete velocities ci and cj such that ci ·cj =0 and |ci |�2cs
(e.g., D3Q15 model). This can be demonstrated as follows. With ci and cj
thus chosen, we take S1 = (ρ,u)= (ρ0,0) with ρ0 �=0 and

S2 = (ρ, u)=
(
(1− θ)−1ρ0, θci

)
, θ := 4c2

s

4c2
s +|ci |2

,

to compute

9
Q
ρ0 =f (eq)

i (S2) �=f (eq)
i (S1)=f (eq)

l (Sk)= 1
Q
ρ0

for l∈{ı̄, j, j̄} and k∈{1,2}. Therefore, the conditions of Theorem 2.2 are
satisfied and the H theorem does not hold. We note that M = θ |ci |/cs ∈
(Mmin,1] at the flow velocity u= θci .

5. CONCLUSIONS

In this paper, we find a set of sufficient conditions under which a LBE
model does not have an H theorem. By verifying the conditions, we rigor-
ously prove that the H theorem is not admitted by a number of athermal
and thermal (energy-conserving) lattice Boltzmann models. In addition, we
narrow the validity domain of the H theorem in (6) for a model with non-
polynomial equilibria by using our analysis. Our analysis does not require
the equilibria to be polynomials, thus the present work extends our previ-
ous results.(12)

For some models, our analysis involves flow velocities with relatively
large amplitude u. The value of u certainly exceeds the bound deter-
mined by the linear stability analysis.(11) It would be important to confirm
our nonexistence results without using the large velocities. This is left for
future research.
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